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This paper presents a power series method with domain partition implemented in a

matrix formulation, as an alternative to other power series techniques in vibration

analysis. The proposed method solves linear differential equations efficiently up to a

desired degree of accuracy and remedies two limitations of the conventional power

solution. If this domain does not include the region under analysis, the series expansion

gives meaningless results. The other limitation is computational in nature; numerical

difficulties arise when calculating natural frequencies, modes of vibration and dynamic

stiffness of continuous models at high frequency. To compare some of the available

implementations of the power series method in modal analysis, the longitudinal

vibration of a rod with linearly varying area is studied. By means of this simple example,

it is demonstrated that the power series method with domain partition provides more

versatility than the power series approximation on complete domains.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The Power Series Method (PSM) is a widely known technique for solving ordinary differential equations. This method is
covered in most books on differential equations [1–4] and its origins can be traced back to the seventeenth century, when
the foundations of differential and integral calculus were developed [3]. The basic approach of the PSM is to assume a
solution in the form of infinite Taylor series, formally substitute this form into the differential equation and after algebraic
manipulations, obtain recurrence relations for the series coefficients. In practical applications, the series expansion is
truncated to a finite number of terms to approximate the solution up to some limiting accuracy. To mention only a couple
of papers on this topic among a large number available in the literature, we can highlight Eisenberger [5] on the application
of the PSM to the calculation of natural frequencies of variable-cross-section rods, and Zhu and Leung [6] on the
computation of the dynamic stiffness of thin-walled structures by power series.

An alternative implementation of the PSM is known as Differential Transformation Method (DTM) [7]. In this method,
the differential equations and boundary conditions (or the initial conditions depending on the problem) are transformed
into a set of algebraic equations. PSM and DTM differ in the way of obtaining the recurrence equations, but are in essence of
the same method. In both versions, the process of iteratively obtaining the series coefficients is typically systematised for
each problem, using a symbolic manipulation program such as Maples or Mathematicas. However, the formulation of the
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recurrence relations is usually derived by hand. This disadvantage can be overcome, when the PSM is reformulated in
terms of matrix operators.

The PSM is especially well suited for finding solutions of differential equations with varying coefficients. These
equations typically arise in problems of vibrations, structural analysis, and heat transfer. The application of the PSM to the
vibration analysis of continuous systems with variable parameters is seldom mentioned as an alternative in books on
vibrations; the classical approach is finite element analysis or the Rayleigh–Ritz method. Accurate solutions may also be
obtained using the PSM, because the polynomial function which approximates the deformation field satisfies the
differential equation up to a desired degree and boundary conditions.

The PSM is not an infallible method and should not be used indiscriminately. A series solution converges in a region free
of singularities; when singularities exist, the convergence is not guaranteed. The presence of singular points in the
differential equation governs the existence and rate of convergence of the series solution [8]. In addition, numerical
difficulties occur when using the PSM in the solution of modes of vibration, natural frequencies, and dynamic stiffness of
continuum models at high frequency. These concepts and limitations are revisited in this work, and justify the proposed
method of power series with the domain partition. The evaluation of the accuracy and computational efficiency of the
method in comparison with Rayleigh–Ritz or finite element methods is beyond the scope of this work; this will be
addressed in future research of the authors.

The paper is organised as follows. In Section 2, the boundary value problem of a tapered rod in axial vibration is
presented and analysed using the implementations of the PSM, DTM, and PSM with domain partition. In Section 3, the
computation of dynamic stiffness of a non-uniform rod is addressed. Using these examples as case studies, the advantages
and disadvantages of the addressed power series techniques are illustrated. Finally, conclusions and directions for further
research are presented.

2. Free vibration analysis of a tapered-rod

The axial displacement field of a rod is governed by the following partial differential equation [9]:

@

@x
EAðxÞ

@

@x
uðx,tÞ

� �
�rAðxÞ

@2

@t2
uðx,tÞ ¼ 0 (1)

E and r are the Young modulus and mass density of the rod material, A(x) is the cross-sectional area, and u(x,t) is the axial
displacement field. In Fig. 1a and b, the origin of the coordinate system for variable x is placed at a distance gL from the left
side of the rod, where L is the length of the rod and g is a dimensionless parameter that can take any value between 0 and 1.

Using the method of separation of variables, the solution of Eq. (1) is assumed to be the product of a shape function f(x)
and a time varying amplitude Y(t)

uðx,tÞ ¼fðxÞYðtÞ (2)

Substitution of Eq. (2) into Eq. (1) yields ordinary differential equations for f(x) and Y(t).
If we consider homogenous material properties and normalise the axial position coordinate x by the length of the rod

x¼
x

L
(3)

we obtain the following non-dimensional differential equation with varying coefficients for the shape functions

A
d2f
dx2
þ

dA

dx
df
dx
þAo2f¼ 0 (4)

In Eq. (4), o is the dimensionless frequency given by

o¼
ffiffiffiffiffiffiffiffi
rL2

E

r
o (5)
Fig. 1. (a) Clamped-free rod and (b) free-clamped rod.
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and o represents the frequency variable. The values of o that provide solutions of Eq. (4) for the corresponding boundary
conditions are the natural frequencies of the model oi (with i=1, 2, y, N).

When we consider a rod with linearly varying area, the area function A(g,x) takes the following form:

Aðg,xÞ ¼ axþb, a¼ AL�A0, b¼ A0þðAL�A0Þg (6)

In Eq. (6), A0 and AL are the cross-sectional areas on the left and right side of the rod, respectively. Introducing Eq. (6)
into Eq. (4), the mode shape equation becomes:

ðaxþbÞ
d2f
dx2
þa

df
dx
þðaxþbÞo2f¼ 0 (7)

The free vibration problem of a rod clamped at one end and free at the other can be solved as ‘‘clamped-free’’ or ‘‘free-
clamped’’ (see Fig. 1a and b) depending on the coordinate system adopted. When the clamped-free problem is considered,
the following conditions must be satisfied at the boundaries:

fð�gÞ ¼ 0 (8)

EAð1�gÞ df
dx
ð1�gÞ ¼ 0-

df
dx
ð1�gÞ ¼ 0 (9)

On the other hand, the free-clamped rod requires

EAð�gÞ df
dx
ð�gÞ ¼ 0-

df
dx
ð�gÞ ¼ 0 (10)

fð1�gÞ ¼ 0 (11)

In this section, we carry out the free vibration analysis of the clamped-free rod of Fig. 1a, using three implementations
of the power series method: (i) the classical method of algebraic recurrences, (ii) the differential transformation method,
and (iii) a matrix implementation. After that, we compare the power series solution of the clamped-free rod (Fig. 1a) with
the solution of the free-clamped model (Fig. 1b). Then, we analyse the influence of a different centre of expansion in the
convergence of the series solution. Finally, we present the method of power series with domain partition, a computational
technique that enhances power series applicability.

2.1. Standard power series approach

According to the theory of power series [1], if x0 is a regular point of Eq. (4), it is possible to derive a power series
solution centred at x0, which converges in a domain defined by

9x�x09oR (12)

where R is the distance from x0 to the nearest singular point. This distance, in the complex plane, represents the lower
bound for the radius of convergence of the series solution.

If the series expansion is centred at the origin of the coordinate system, x0=0. By moving this origin within the region
under analysis, other points of expansion can be considered.

The power series solution defines a function whose domain is the interval of convergence of the series. Therefore, this
domain must be large enough to include the element boundaries. If the element domain lies inside the region defined by
Eq. (12), the existence of a power series solution can be assured.

Dividing both terms of Eq. (4) by the area function A(g,x), we obtain

d2f
dx2
þ

1

A

dA

dx
df
dx
þo2f¼ 0 (13)

The mode shape equation expressed in this form – known as standard form – shows that the singular points of the
differential equation are the zeros of the area function A(g,x), or its discontinuities, in which case the derivative of A(g,x) is
not defined. For a rod with linearly varying area, there is only one singular point located at x¼�b=a. Using Eq. (6),
the lower bound for the radius of convergence is

R¼
�b

a

����
����¼ A0

A0�AL
�g

����
���� (14)

As Eq. (14) indicates, the radius of convergence depends on two issues: (i) the geometry of the rod and (ii) the location
of the origin of the coordinate system, where the series expansion is centred.

Let us consider the clamped-free rod of Fig. 1a. If the centre of the series expansion is placed on the left edge of the
rod (g=0)

A04AL-
A0

A0�AL
41-R41 (15)

the convergence domain includes the region under analysis, assuring the convergence of the solution.
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We propose the following power series expansion for the mode shape

f¼
X1
i ¼ 0

lix
i (16)

where li are the unknown coefficients to be determined. Differentiation of Eq. (16) leads to

df
dx
¼

d

dx

X1
i ¼ 0

lix
i

 !
¼
X1
i ¼ 0

ilix
i�1
¼
X1
i ¼ 0

ðiþ1Þliþ1x
i (17)

d2f
dx2
¼

d

dx

X1
i ¼ 0

ðiþ1Þliþ1x
i

 !
¼
X1
i ¼ 0

iðiþ1Þliþ1x
i�1
¼
X1
i ¼ 0

ðiþ2Þðiþ1Þliþ2x
i (18)

Replacing Eqs. (16)–(18) in Eq. (7)

ðaxþbÞ
X1
i ¼ 0

ðiþ2Þðiþ1Þliþ2x
i
þa

X1
i ¼ 0

ðiþ1Þliþ1x
i
þðaxþbÞo2

X1
i ¼ 0

lix
i
¼ 0 (19)

Expanding Eq. (19) and working out the resulting expression, we obtain

X1
i ¼ 1

fbðiþ2Þðiþ1Þliþ2þaðiþ1Þ2liþ1þbo2liþao2li�1gx
i
þ2bl2þbo2l0þal1 ¼ 0 (20)

In order to satisfy the differential equation, the following terms in Eq. (20) must vanish:

2bl2þbo2l0þal1 ¼ 0 (21)

bðiþ2Þðiþ1Þliþ2þaðiþ1Þ2liþ1þbo2liþao2li�1 ¼ 0 (22)

Assuming that b is non-zero, the following recurrence relations are obtained from Eqs. (21) and (22):

l2 ¼
�al1�bo2l0

2b
(23)

liþ2 ¼�
aðiþ1Þ2liþ1þbo2liþao2li�1

bðiþ2Þðiþ1Þ
(24)

According to the boundary condition at x= �g=0

fð0Þ ¼ 0-
X1
i ¼ 0

li0
i
¼ 0-l0 ¼ 0 (25)

Therefore, substituting Eq. (25) into Eq. (23)

l2 ¼
�a

2b
l1 (26)

Using Eqs. (26) and (24), the coefficients of the series expansion can be obtained in terms of l1.
The following results were obtained for five successive coefficients:

i¼ 1, l3 ¼
2a2�b2o2

6b2
l1 (27)

i¼ 2, l4 ¼
�3a3þab2o2

12b3
l1 (28)

i¼ 3, l5 ¼
24a4�7a2b2o2

þb4o4

120b2
l1 (29)

i¼ 4, l6 ¼
�40a5þ11a3b2o2

�ab4o4

240b5
l1 (30)

i¼ 5, l7 ¼
720a6�192a4b2o2

þ15a2b4o4
�b6o6

5040b6
l1 (31)

The boundary condition at x=1�g=1 implies

df
dx
ð1Þ ¼

X1
i ¼ 0

ili1
i�1
¼ 0 (32)

Eq. (32) constitutes the frequency equation of the clamped-free tapered rod.
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As an example, let us consider the following area function:

Aðg,xÞ ¼ Að0,xÞ ¼�xþ2 (33)

Substituting the values of l from Eqs. (25)–(31) into Eq. (32), the following expression is obtained:

�
1

720
o6
þ

19

320
o4
�

253

320
o2
þ

127

64

� �
l1 ¼ 0 (34)

For l1a0, the equation in parentheses must vanish

�
1

720
o6
þ

19

320
o4
�

253

320
o2
þ

127

64
¼ 0 (35)

Eq. (35) has the following roots:

�4:514770:7911j

4:514770:7911j

71:7993

(36)

where j¼
ffiffiffiffiffiffiffi
�1
p

. The positive real root 1.7993 represents an approximation of the first natural frequency of the system.
Complex roots have to be discarded. The accuracy of the approximation and number of estimated natural frequencies can
be improved using more terms of the series expansion, as shown in Table 1.

Setting l1=1 and substituting o¼ 1:7993 into Eqs. (27)–(31), the corresponding mode shape coefficients are obtained

fðxÞ ¼�0:0044x7
þ0:0085x6

þ0:0526x5
�0:1036x4

�0:4562x3
þ1=4x2

þxþ0 (37)

Higher mode shapes can be determined using this iterative procedure. As Table 1 demonstrates, the computation of
higher natural frequencies requires increasing orders of the series expansion and the number of estimated frequencies
obtained using this method varies with the degree of the approximation n. A larger value of n does not always imply a
larger number of estimated frequencies. In all cases, this number is significantly smaller than the degree n. This is a
disadvantage of the power series method application to modal analysis that is not frequently mentioned in published
research.

2.2. Differential transformation method

The DTM was introduced by Zhou [7] for the solution of linear and non-linear initial value problems in electric circuit
analysis. Unfortunately, the authors have not found an available translation of that work (written in Chinese). The
following description of the method is based on the work of Chen and Ho [10] who applied the DTM to the solution of
eigenvalue problems.

The differential transformation of a function f(x) is defined as

UðkÞ ¼
1

k!

dkfðxÞ

dxk

" #
x ¼ 0

(38)

where F(k) is the transformed function. The inverse differential transformation of F(k) is as follows:

fðxÞ ¼
X1
k ¼ 0

xk
UðkÞ (39)
Table 1
Positive real roots computed for the tapered rod (clamped-free model, g=0).

Degree n o1 o2 o3 o4

7 1.7993 – – –

8 1.7949 – – –

9 1.7948 4.7707 – –

10 1.7945 4.4036 – –

11 1.7942 4.7647 6.3904 –

12 1.7941 – – –

13 1.7941 4.8128 – –

14 1.7940 4.7842 – –

15 1.7940 4.8005 7.6712 –

16 1.7940 4.8038 6.9830 –

17 1.7940 4.8022 7.8337 8.7961

18 1.7940 4.8019 – –

19 1.7940 4.8020 7.9573 –

20 1.7940 4.8021 7.7733 –

21 1.7940 4.8021 7.8987 10.3971
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Combining Eqs. (38) and (39)

fðxÞ ¼
X1
k ¼ 0

1

k!

dkfðxÞ

dxk

" #
x ¼ 0

xk (40)

Eq. (40) shows that the differential transformation is based on the Taylor series expansion of f(x) at x=0.
In practical applications, the function f(x) is expressed by a truncated series, therefore, Eq. (40) becomes

fðxÞ ¼
Xm

k ¼ 0

xk
UðkÞ (41)

The number of terms in Eq. (41) is determined by convergence requirements. In this method, the following convention is
usually adopted: lower-case letters denote original functions, while the corresponding upper-case letters represent their
transformed functions.

As indicated in [10], the differential transformation satisfies the properties listed in Table 2.
Zeng and Bert [11] applied the DTM to the free longitudinal vibration analysis of a free-clamped rod with an area

function A(0,x)=2x. The case of a clamped-free rod with a general linearly varying area A(0,x)=ax+b is presented hereafter.
Using the properties in Table 1, the differential transformation of Eq. (7) becomes

a
Xk

l ¼ 0

dðl�1Þðk�lþ1Þðk�lþ2ÞUðk�lþ2Þþbðkþ1Þðkþ2ÞUðkþ2Þ

þaðkþ1ÞUðkþ1Þþao2
Xk

l ¼ 0

dðl�1ÞUðk�lÞþbo2UðkÞ ¼ 0

(42)

Expressing Eq. (42) as a recurrence relation, for ba0

Uðkþ2Þ ¼
�bo2UðkÞ�a

Pk
l ¼ 0 dðl�1Þðk�lþ1Þðk�lþ2ÞUðk�lþ2Þþo2dðl�1ÞUðk�lÞ

h i
�aðkþ1ÞUðkþ1Þ

bðkþ1Þðkþ2Þ
(43)

Evaluating Eq. (43) for k=0

Uð2Þ ¼
�aUð1Þ�bo2Uð0Þ

2b
(44)

Then, for kZ1

Uðkþ2Þ ¼�
aðkþ1Þ2Uðkþ1Þþbo2UðkÞþao2Uðk�1Þ

bðkþ1Þðkþ2Þ
(45)

Note that Eqs. (44) and (45) are the same recurrence relations given by Eqs. (23) and (24).
For the clamped-free example, the boundary conditions (8) and (9) impose

fð�gÞ ¼fð0Þ ¼ 0-Uð0Þ ¼ 0 (46)

df
dx
ð1�gÞ ¼ df

dx
ð1Þ ¼ 0-

X1
k ¼ 0

kUðkÞ1k�1
¼ 0 (47)

Note that Eqs. (44)–(47) are equivalent to Eqs. (23)–(25) and (32). The natural frequencies and mode shapes can be
determined in an iterative way, using the same procedure outlined in Section 2.1.
Table 2
Properties of the differential transformation.

Original function Transformed function

w(x)=y(x)7z(x) W(k)=Y(k)7Z(k)

z(x)=by(x) Z(k)=bY(k)

zðxÞ ¼
dnyðxÞ

dxn

ZðkÞ ¼ ðkþ1Þðkþ2Þ � � � ðkþnÞYðkþnÞ

w(x)=y(x)z(x)
WðkÞ ¼

Pk
l ¼ 0

YðlÞZðk�lÞ

w(x)=xm

WðkÞ ¼ dðk�mÞ ¼
1 if k¼m

0 if kam

(
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2.3. Matrix implementation of power series

Denote by Pn the space of polynomials of degree less than or equal to n with ordered basis {xn, xn�1, xn�2, y , 1}. Given
a differential equation, we obtain the matrix representation of its associated differential operator, when the
domain and range are restricted to Pn. The following matrix operators are used to write down this differential
operator.

Derivative operator

The matrix of the derivative operator is

Dg
¼

0 � � � � � � � � � � � � 0

n & ^

^ n�1 & ^

^ & & ^

^ & & ^

0 � � � � � � � � � 1 0

2
666666664

3
777777775

g

, size : ðnþ1Þ � ðnþ1Þ (48)

where g is the order of differentiation. Note that D0 is the identity matrix I.
Truncated multiplication operator

The multiplication of Dg by x is obtained as [MT] [D]g, where MT is the ‘‘truncated multiplication’’ operator

MT ¼

0 1 0 � � � � � � 0

^ & 1 0 ^

^ & 1 & ^

^ & & 0

^ & 1

0 � � � � � � � � � � � � 0

2
666666664

3
777777775

, size : ðnþ1Þ � ðnþ1Þ (49)

Here we see the restriction of the range to Pn, because degðxDg
Þ ¼ 1þdegðDg

Þ ¼ 1þn and only terms of degree less than or
equal to n are considered. To multiply by xm, use Mm

T , and when m=0, M0
T ¼ I.

Using Eqs. (48) and (49), the differential operator associated with the mode shape equation (7) is written as an algebraic
system of equations

½ðaMTþbIÞD2
þaD1

þo2
ðaMTþbIÞ�

ln

ln�1

^

l0

2
66664

3
77775¼

0

0

^

0

2
6664
3
7775 (50)

When the degree is n=7, the following equation is obtained:

2o2
�o2 0 0 0 0 0 0

�49 2o2
�o2 0 0 0 0 0

84 �36 2o2
�o2 0 0 0 0

0 60 �25 2o2
�o2 0 0 0

0 0 40 �16 2o2
�o2 0 0

0 0 0 24 �9 2o2
�o2 0

0 0 0 0 12 �4 2o2
�o2

0 0 0 0 0 4 �1 2o2

2
666666666666664

3
777777777777775

l7

l6

l5

l4

l3

l2

l1

l0

2
666666666666664

3
777777777777775

¼

0

0

0

0

0

0

0

0

2
66666666666664

3
77777777777775

(51)

The boundary conditions provide two additional linearly independent equations to this system

fð�gÞ ¼fð0Þ ¼ 0-l0 ¼ 0 (52)

df
dx
ð1�gÞ ¼ df

dx
ð1Þ ¼ 0-7l7þ6l6þ5l5þ4l4þ3l3þ2l3þ1l1þ0l0 ¼ 0 (53)
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In order to consider n+1 equations (to define a square matrix), the first two rows in Eq. (51) � corresponding to higher
orders of the approximation � are replaced by the boundary conditions (52) and (53)

0 0 0 0 0 0 0 1

7 6 5 4 3 2 1 0

84 �36 2o2
�o2 0 0 0 0

0 60 �25 2o2
�o2 0 0 0

0 0 40 �16 2o2
�o2 0 0

0 0 0 24 �9 2o2
�o2 0

0 0 0 0 12 �4 2o2
�o2

0 0 0 0 0 4 �1 2o2

2
66666666666664

3
77777777777775

l7

l6

l5

l4

l3

l2

l1

l0

2
666666666666664

3
777777777777775

¼

0

0

0

0

0

0

0

0

2
66666666666664

3
77777777777775

(54)

The existence of non-trivial solutions to Eq. (54) implies that the coefficient matrix, which is denoted by PnðoÞ, must be
singular. Therefore

det½P7ðoÞ� ¼ 0-322,560o6
�13,789,440o4

þ183,617,280o2
�460,857,600¼ 0 (55)

Eq. (55) represents the frequency equation of the power series approximation. Note that Eqs. (35) and (55) are
equivalent expressions (Eq. (55) can be obtained multiplying Eq. (35) by �232,243,200), therefore, they have the same
roots given by Eq. (36).

The corresponding mode shape is obtained finding the non-zero coefficients li of a vector k, which satisfies the linear
homogenous equation

½P7ð1:7993Þ� k¼ 0 (56)

The accuracy of the computation can be improved by increasing the degree of the operator PnðoÞ.

2.4. Comparison between the ‘‘clamped-free’’ and ‘‘free-clamped’’ models

The clamped-free rod example defined by Eq. (33) can be solved as the free-clamped model of Fig. 1b, using the
following area function:

Aðg,xÞ ¼ Að0,xÞ ¼ xþ1 (57)

Since 9b9=9a9, according to Eq. (14), R=1. The element domain equals the convergence interval, so the existence of a series
solution centred on the left edge of the element (g=0) must be investigated.

The boundary conditions (10) and (11) impose

df
dx
ð�gÞ ¼ df

dx
ð0Þ ¼ 0-l1 ¼ 0 (58)

fð1�gÞ ¼fð1Þ ¼ 0-
Xn

i ¼ 0

li ¼ 0 (59)

We construct the system of Eq. (50) for n=7 using the area function (57) and substitute the first two rows of the
coefficient matrix with the boundary conditions (58) and (59):

0 0 0 0 0 0 1 0

1 1 1 1 1 1 1 1

42 36 o2 o2 0 0 0 0

0 30 25 o2 o2 0 0 0

0 0 20 16 o2 o2 0 0

0 0 0 12 9 o2 o2 0

0 0 0 0 6 4 o2 o2

0 0 0 0 0 2 1 o2

2
66666666666664

3
77777777777775

l7

l6

l5

l4

l3

l2

l1

l0

2
666666666666664

3
777777777777775

¼

0

0

0

0

0

0

0

0

2
66666666666664

3
77777777777775

(60)

The frequency equation becomes

det½P7ðoÞ� ¼ 0-�2880o6
þ99,360o4

�1,343,520o2
þ3,628,800¼ 0 (61)

Eq. (61) has the following roots:

4:146671:3067j

�4:146671:3067j

71:8780

(62)
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Note that the approximation of the first natural frequency (o1 ¼ 1:8780) differs significantly from the result obtained
for the clamped-free rod (o1 ¼ 1:7992). The rate of convergence of both models can be analysed using the results listed in
Table 3.

As Table 3 illustrates, the clamped-free model stabilises quickly, while the convergence of the free-clamped version is
extremely slow even computing the fundamental natural frequency. The computation of higher natural frequencies using
the latter model would require extremely large degrees, resulting in a problem that would be too expensive
computationally.

This free-clamped example represents a limiting case between the success and failure of the series expansion centred
on the left edge of the element (g=0). As a matter of fact, a steeper slope in the area function (57) would impose

a41- aj j4 b
�� ��-Ro1 (63)

Then, the interval of convergence would not contain the element boundaries causing the PSM to give meaningless results.
2.5. Selection of the centre of expansion

The speed of convergence of a power series approximation is, in general, very sensitive to the distance from the centre
of expansion. If we choose the centre of expansion on one edge of the element, the points closer to the other edge may
experience slow convergence. Choosing the centre of expansion to coincide with the centre of the element (g=1/2)
minimises the maximum distance between the points under consideration and the centre of expansion. This means that
this choice has a better chance of faster convergence overall.

If the origin of the coordinate system is placed at g=1/2, the area functions (33) and (57) become

Aðg,xÞ ¼ Að1=2,xÞ ¼�xþ
3

2
, clamped-free model (64)

Aðg,xÞ ¼ Að1=2,xÞ ¼ xþ
3

2
, free-clamped model (65)

According to Eq. (14), both models have the same radius of convergence: R=3/2. Comparing the results of Tables 3
and 4, we see that the speed of convergence of the solution is greatly improved. Note that when g=1/2, the results for
clamped-free and free-clamped examples are identical.
Table 3
Results for o1: comparison between ‘‘clamped-free’’ and ‘‘free-clamped’’ models (g=0).

Degree n Clamped-free model (g=0) Free-clamped model (g=0)

5 1.787376881424038 1.948343381090857

7 1.799262256950063 1.877980005594379

13 1.794067262363255 1.842212513691217

14 1.794039244169542 1.751667896486866

15 1.794025121850327 1.835965764956050

20 1.794011353980687 1.763650488053592

30 1.794010905201035 1.773410102254346

40 1.794010904759122 1.778428453437813

60 1.794010904759122 1.783536220889923

80 1.794010904758689 1.786122928034675

100 1.794010904758689 1.787685291203742

120 1.794010904758688 1.788731136227012

150 1.794010904758689 1.789780375422146

Table 4
Results for o1: comparison between ‘‘clamped-free’’ and ‘‘free-clamped’’ models (g=1/2).

Degree n Clamped-free model (g=1/2) Free-clamped model (g=1/2)

5 1.796864135421148 1.796864135421148

7 1.794220613434518 1.794220613434518

13 1.794011212724370 1.794011212724370

14 1.794010998518423 1.794010998518423

15 1.794010938952015 1.794010938952015

20 1.794010904890254 1.794010904890254

30 1.794010904758691 1.794010904758691

40 1.794010904758688 1.794010904758688

50 1.794010904758688 1.794010904758688
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2.6. Proposed method: domain-partition power series

Fig. 2 shows a free-clamped rod divided into s elements of lengths L1, L2, y, Ls. The partition of the element domain into
regions whose lengths Li satisfy Li/LoR, guarantees the existence of power series solutions in each region. The mode shape
approximation becomes a piecewise function defined on subdomains 1, 2, y, s. The subdomain functions are denoted by
f(1)(x1), f(2)(x2), y, f(s)(xs), where

�gi

Li

L
rxirð1�giÞ

Li

L
; i ¼ 1;2; . . . ; s (66)

The power series approximation of the mode shape is a piecewise polynomial, whose coefficients are denoted by li,t,
where t=1, 2, y, s indicates the subdomain, and i=0, 1, y, n represents the coefficient degree. The polynomial degree n

and the location of the centre of expansion may vary between subdomains.
For the free-clamped model, the following conditions must be satisfied at x1= �g1L1/L and at xs=(1�gs)Ls/L

dfð1Þ

dx1
�g1

L1

L

� �
¼ 0-

Xn

i¼0

ili;1 �g1

L1

L

� �i�1

¼ 0 (67)

fðsÞ ð1�gsÞ
Ls

L

� �
¼ 0-

Xn

i¼0

li;s ð1�gsÞ
Ls

L

� �i

¼ 0 (68)

In addition to these boundary conditions, the following continuity conditions are imposed at partition junctions.
Compatibility of displacements

fðtÞ ð1�gtÞ
Lt

L

� �
�fðtþ1Þ

�gtþ1

Ltþ1

L

� �
¼ 0-

Xn

i¼0

li;t ð1�gtÞ
Lt

L

� �i

�
Xn

i¼0

li;tþ1 �gtþ1

Ltþ1

L

� �i

¼ 0; t ¼ 1;2; . . . ; s�1 (69)
Fig. 2. Free-clamped rod with domain partition.

Fig. 3. Form of the differential operator when the element domain is partitioned.
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Equilibrium of forces

dfðtÞ

dxt
ð1�gtÞ

Lt

L

� �
�

dfðtþ1Þ

dxtþ1
�gtþ1

Ltþ1

L

� �
¼ 0-

Xn

i¼0

ili;t ð1�gtÞ
Lt

L

� �i�1

�
Xn

i¼0

ili;tþ1 �gtþ1

Ltþ1

L

� �i�1

¼ 0;

t ¼ 1;2; . . . ; s�1 (70)

The differential operator associated with the differential Eq. (7) can take the form shown in Fig. 3.
The empty blocks in Fig. 3 represent zero matrices, while the shaded regions indicate assembly of boundary-condition

influence coefficients for the elements of vector l.
Table 5
Power series approximations of the first natural frequency (free-clamped models, g=0).

Degree n Number of domain subdivisions

1 2 3 4 5 6 7 8

5 1.9483 1.8072 1.7963 1.7947 1.7943 1.7941 1.7941 1.7940

6 1.7037 1.7884 1.7934 1.7939 1.7940 1.7940 1.7940 1.7940

7 1.8780 1.7967 1.7942 1.7940 1.7940 1.7940 1.7940

8 1.7248 1.7927 1.7939 1.7940

9 1.8624 1.7947 1.7940

10 1.7367 1.7937 1.7940

11 1.8506 1.7942

12 1.7453 1.7939

13 1.8422 1.7941

14 1.7517 1.7940

15 1.8360 1.7940

Table 6
Power series approximations of the first natural frequency (free-clamped models, g=1/2).

Degree n Number of domain subdivisions

1 2 3 4

5 1.7969 1.7943 1.7941 1.7940

6 1.7948 1.7940 1.7940 1.7940

7 1.7942 1.7940 1.7940

8 1.7941

9 1.7940

10 1.7940

Fig. 4. Number of natural frequencies obtained for several free-clamped models (g=0).
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Fig. 5. Number of natural frequencies obtained for several free-clamped models (g=1/2).

Fig. 6. (a) Non-uniform rod subjected to harmonic end displacements and (b) harmonic forces at the ends of the rod.
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The results of Table 5 correspond to free-clamped rods divided into uniform regions and approximated by left-centred
polynomials (g=0) of equal degree in each subdomain. As this table demonstrates, the larger the ratio of R to Li/L, the faster
the series converges. When middle-centred polynomial expansions (g=1/2) are proposed in each subdomain, the
convergence is notably accelerated, as evidenced in Table 6.

The number of eigenvalues obtained varies with the number of subdivisions and the polynomial degree, as Figs. 4 and 5
illustrate. Comparing both figures, we see that when g=1/2 (Fig. 5), more eigenvalues are captured. In general, the partition
of the domain increases the information the model is able to offer.

3. Dynamic stiffness of non-uniform rods

In this section, the computation of dynamic stiffness of a rod subjected to axial vibration is investigated using the
classical PSM and the proposed method (Fig. 6).

For the non-uniform rod studied in Section 2, we seek an expression of the form

f1ðoÞ
f2ðoÞ

" #
¼

S11ðoÞ S12ðoÞ
S21ðoÞ S22ðoÞ

" #
u1ðoÞ
u2ðoÞ

" #
(71)

where the coefficient matrix SðoÞ is the dynamic stiffness of the rod and relates the Fourier transform of end displacements
and the Fourier transform of end forces. For that purpose, consider that the rod is undergoing harmonic forced vibrations
produced by the following end displacements (see Fig. 6a)

u1 ¼ uð�g,tÞ ¼ q1ejot (72)

u2 ¼ uð1�g,tÞ ¼ q2ejot (73)
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q1 and q2 are end-displacement amplitudes. The displacements in the rod are governed by the same dimensionless
ordinary differential Eq. (4), with displacement boundary conditions f(�g)=u1 and f(1�g)=u2.

By applying unit displacements at the element ends, and then computing the corresponding axial forces, the coefficients
of the dynamic stiffness of the rod are computed. Impose u1=0 and u2=1 and, for a given value of the dimensionless
frequency o, solve the boundary value problem to obtain the shape function f(x). Then, the forces at the ends of the
rod are

f1 ¼�EAð�gÞ df
dx
ð�gÞ ¼ S12ðoÞ (74)

f2 ¼ EAð1�gÞ df
dx
ð1�gÞ ¼ S22ðoÞ (75)

Similarly, imposing u1=1 and u2=0, S11ðoÞ and S21ðoÞ are obtained.
To illustrate this procedure, we consider the clamped-free rod of Fig. 1a. In this case, the dynamic stiffness SðoÞ of the

rod reduces to S22ðoÞ.
3.1. Solution on a single domain

Using the matrix implementation of the PSM presented in Section 2.3, the process of computing dynamic stiffness
coefficients is straightforward. Let us calculate an approximation of S22ðoÞ for o¼ 2, considering g=1/2, the area function
(64), and a degree n=7.

The boundary conditions u1=0 and u2=1 imply

u1 ¼ 0-fð�1=2Þ ¼ 0-
Xn

i ¼ 0

lið�1=2Þi ¼ 0 (76)

u2 ¼ 1-fð1=2Þ ¼ 1-
Xn

i ¼ 0

lið1=2Þi ¼ 1 (77)

Assembling the system of Eq. (50) for n=7, and replacing the first two equations of this system by the boundary conditions
(76) and (77), we obtain

�1=128 1=64 �1=32 1=16 �1=8 1=4 �1=2 1

1=128 1=64 1=32 1=16 1=8 1=4 1=2 1

63 �36 3=2o2
�o2 0 0 0 0

0 45 �25 3=2o2
�o2 0 0 0

0 0 30 �16 3=2o2
�o2 0 0

0 0 0 18 �9 3=2o2
�o2 0

0 0 0 0 9 �4 3=2o2
�o2

0 0 0 0 0 3 �1 3=2o2

2
6666666666666664

3
7777777777777775

l7

l6

l5

l4

l3

l2

l1

l0

2
666666666666664

3
777777777777775

¼

0

1

0

0

0

0

0

0

2
66666666666664

3
77777777777775

(78)

The solution of Eq. (78) for o¼ 2, leads to

fðxÞ ¼�0:0229x7
�0:0360x6

þ0:1315x5
þ0:1607x4

�0:9866x3
�1:1362x2

þ1:2388xþ0:7746 (79)

Then, according to Eq. (75)

S22ð2Þ ¼ EAð1=2Þ
df
dx
ð1=2Þ ¼ E� 1� ð�0:5252Þ (80)

A plot of (S22/EA) as a function of the dimensionless frequency is shown in Fig. 7. Also included in that figure
are cross symbols, which indicate the location of the natural frequencies of the system. Searching for the values of o
for which S22 =0, represents an alternative way for finding natural frequencies. This method was used by Eisenberger
in his study of non-uniform rods [5]; results for the first five natural frequencies of this example can be found in
his work.

Two intersections are found, one at o¼ 1:7942 and the other at o¼ 4:8226. To obtain an accurate representation of
the dynamic stiffness valid in a wider frequency range, more terms of the series expansion must be taken into account.
In theory, there is no limit to the number of terms to be considered. However, the matrix of the differential operator
PnðoÞ becomes extremely ill conditioned for combinations of high frequency and high degree in the polynomials,
preventing further computations. As Fig. 8 indicates, dynamic stiffness estimation is accurate up to o� 65. A similar
bound is encountered, when computing natural frequencies using the method outlined in Section 2.3. For this
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Fig. 8. Dynamic stiffness of a clamped-free rod (single domain, n=130, g=1/2).

Fig. 7. Dynamic stiffness of a clamped-free rod (single domain, n=7, g=1/2).
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example, numerical difficulties restrict the use of the conventional PSM to calculation of the first twenty-one natural
frequencies.
3.2. Solution with domain partition

Apparently, the computational limitation of the standard PSM at high frequency has not been addressed in the
literature. Published papers on the application of the PSM to the free vibration analysis of the continuous systems typically
show results for the lower five natural frequencies (see for instance Refs. [5,11]).

This computational weakness can be remedied using the PSM with domain partition. This is evidenced in Fig. 9, where
the dynamic stiffness of the rod is computed using polynomials of degree n=35 on five uniform subdomains. For this case,
thirty-five natural frequencies are captured with excellent precision.
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Fig. 9. Dynamic stiffness of a clamped-free rod (five subdomains, n=35, g=1/2).
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4. Concluding remarks and future developments

The classical implementation of power series and the Differential Transformation Method have been compared in this
paper. The Differential Transform Method does not differ from the classical power series method and only systematises the
computation of recurrence relations for the coefficients of the series expansion, using a different notation. Both versions
require extensive symbolic manipulation, while the formulation of power series in terms of matrix operators is easier to
systematise and can be implemented in a fully numerical approach, suitable for computer solution.

Two limitations of conventional power series have been addressed: (i) the existence of singularities within the region
under analysis may cause the conventional method to fail and (ii) numerical difficulties in the estimation of natural
frequencies, mode shapes and dynamic stiffness of continuum models at high frequency. Both limitations are remedied by
the proposed domain partition, seeking power series solutions in each interval or subdomain. This simple variation of the
power series method augments its range of applicability in the vibration analysis of continuous systems at high frequency.
This versatility is gained at an increased computational cost, because the dimension of the matrix operator increases with
the number of subdomains required to achieve the desired convergence and accuracy.

The method can be applied in an analogous manner to modal analysis of single displacement field models, such as
flexural vibration of beams, torsional vibration of shafts, and lateral vibration of taut strings. The extension of the method
to the solution of coupled linear and nonlinear differential equations and the accuracy comparison with traditional finite
element methods will be pursued by the authors in future research work.
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